欢迎来到亿配芯城! | 免费注册
你的位置:贴片陶瓷电容(MLCC)贴片电容采购平台 > 话题标签 > 测量

测量 相关话题

TOPIC

问题:我需要确定一个低电阻传感器的电阻变化,我的计划只是在细线传感器引线上施加一个已知的电压,然后测量电流。然后通过欧姆定律(电阻=电压/电流或R=V/I),我可以很容易地计算传感器电阻。但是,传感器引线的标称电阻和温度系数会影响读数从而导致我无法校准的错误。该怎么办? 解决方案:使用开尔文电桥来解决这个常见的问题。为此,使用电流源通过现有导线向传感器提供已知电流。然后在传感器上增加另外两条引线,通过高阻抗表或缓冲放大器读取传感器上的电压(图1)。再次使用欧姆定律,但使用已知电流和测量电压。在
我们用电桥测试变压器漏感时,要短路副边,测试原边得到的电感量则为漏感。你有想过为什么要短路副边,这样测试的原理是什么? 如图是理想变压器,理想变压器遵循以下公式: V2 = N2/N1*V1 N2:副边的匝数 N1:原边的匝数 但实际中变压器总是不理想的,总有一部分磁通不参与能量传递,在原边兴风作浪,产生很多不利影响。这部分不传递能量到副边的磁通产生的电感就是漏感,实际变压器的等效图如下: 等效图中漏感总是绕组串联的。为了测量绕组的电感量,我们使用电桥施加一定的频率一定的电压进行测量,测量原理
电容的测量 Q1 问:如何正确测量电容容量和耗散因子? 答:正确测量的关键在于电表设置。详见表 1。 电压设置对于高电容容量的电容而言至关重要。对于某些电容表,如果施加到测试元件的电压不够,电容容量读数就会很低。 频率设置也很重要。由于电容容量随频率的变化而变化,因此行业标准将测试频率指定为 1MHz、1kHz 或 120Hz(请参见表 1)。 辨别 EIA II 类电容的老化现象同样重要。对于 II 类材料,电容容量会随时间而减小。因此,一项广为接受的行业惯例规定,在 加热(TOLH)后 1
一、概念: 二极管是两端口电子器件,支持电流沿着一个方向流动(正向压),并阻碍电流从反方向流动(反向偏压)。无论在研究实验室还是生产线,都要对封装器件或在晶圆上进行二极管I-V测试。 二、数字源表测量优势: 二极管I-V特性分析通常需要高灵敏电流表、电压表、电压源和电流源。对所有分离仪器进行编程、同步和连接,既麻烦又耗时,而且需要大量机架或测试台空间。 S型数字源表简化了测试,缩小机架空间,成为二极管特性分析的理想选择,因为它能够提供电流和电压的源和测量。 三、二极管I-V测试 二极管参数测试
设计人员往往忽略高容量、多层陶瓷电容(MLCC)随其直流电压变化的特性。所有高介电常数或II类电容(B/X5R R/X7R和F/Y5V特性)都存在这种现象。然而,不同类型的MLCC变化量区别很大。Mark Fortunato曾经写过一篇关于该主题的文章,给出的结论是:您应该核对电容的数据资料,确认电容值随偏压的变化。但如果数据资料中未提供这一信息又该如何呢?您如何确定电容在具体应用条件下变小了多少? 对电容与偏压关系进行特征分析的理论 图1所示为一种测量直流偏压特性的电路。该电路的是运算放大器